# Computer modeling of cellular processes

Glycolysis: a few reactions

By

Raquell M. Holmes, Ph.D.

**Boston University** 

# Dynamics: Answering different questions

- If glucose concentration is 300 mM outside of the cell,
  - How quickly is glucose converted to glucose 6phosphate?

– How does the concentration of glucose 6 phosphate change over time?

# Yeast Glycolysis

suspended Liquid, flasks, temp, ph

**Experiment:** 

Sample media or characterize cell content over time

Repeat under different conditions



Agar, temp, ph



# Results may look like





# Computer Modeling

- Method for analyzing what we know about a biological process
- •Used to describe mechanisms behind changes
- •Determines what can be seen or predicted

# Walking through a Computational Model

- Concept Map
- Factors and relationships between factors
- Describe relationships mathematically

- Solve equations: using computer tools
- View and interpret results

# Designing a dynamic experiment

- What components are involved?
  - Glucose, glucose 6 phosphate, fructose 6 phosphate...

- What chemical reactions involved?
  - Transport, chemical conversions...

# Glycolysis: Concept Map

Often drawings, schematics or chemical reactions



# Examples of relationships



[Glucose 6-phosphate] is determined by increase from Glucose conversion and decrease by conversion to Fructose 6-phosphate

Amount of glucose 6 phosphate= amount produced- amount converted

# Designing a dynamic experiment

Describing relationship mathematically

# Relationship in terms of rates of change

The rate of change of Glucose-6-phosphate (S<sub>2</sub>) is the rate of Glucose conversion (v1) minus the rate of conversion (v2) to Fructose-6-phosphate.

$$\frac{dS_2}{dt} = v_1 - v_2$$

## Designing a dynamic experiment

Describing relationship mathematically

- What rate laws are known to describe the enzymatic reaction?
  - Types of rate laws/kinetic models
    - Constant, mass action, michaelis menten...

# Simplify

Glucose transport (v1)
 Facilitated diffusion

$$v = V^{+} \frac{Glc_{out} - Glc_{in}}{K_{Glc}}$$

$$1 + \frac{Glc_{out}}{K_{Glc}} + \frac{Glc_{in}}{K_{Glc}} + K_{i} \frac{Glc_{out}Glc_{in}}{K_{Glc}}$$

# Rate Equations

#### Substrates

- Glucose:  $S_1$
- Glucose-
- 6-phosphate:  $S_2$

### Rate constants

- Enzymel:  $k_1$
- Enzyme2:  $k_2$

•Mass action kinetics are used here to describe the enzymatic reactions.

$$v_1 = k_1 S_1$$
$$v_2 = k_2 S_2$$

•This is a simplification of the enzyme kinetics for this example.

## Initial conditions

- Concentrations of components
  - External glucose (i.e. 300mM)

- Enzymatic rates
  - Rate constant k (i.e. 50mM/min)
  - Michaelis-Menten constants, Hill Coefficients



Ordinary differential equation

$$\frac{dS_2}{dt} = v_1 - v_2$$

Rate equations

$$v_1 = k_1 S_1$$
$$v_2 = k_2 S_2$$

Initial conditions

# Walking through a Computational Model

- Concept Map
- Factors and relationships between factors
- Describe relationships mathematically

- Solve equations: using computer tools
- View and interpret results

## Some Available Tools

#### General

- 1. Stella
  - Install
  - Mac or PC
- 2. Excel
  - Install
  - Mac or PC

#### **Customized**

- 3. GEPASI
  - Install
  - Mac or PC
- 4. Virtual Cell
  - Browser: Java
  - Mac or PC

- 1. Concept mapping and system dynamics (changes over time).
- 2. Discrete events, algebraic equations

- 3. Biochemical kinetics and kinetic analyses.
- 4. Icon mapping, dynamics and space

## Stella

### Concept Map



#### Rules as math

```
{ RUNTIME EQUATIONS }
Glucose(t) = Glucose(t - dt) + (inflow_of_glucose_ - conversion_rate) * dt
GlucoseGp(t) = GlucoseGp(t - dt) + (conversion_rate) * dt
conversion_rate = k1*Glucose
```

#### **Initial Conditions**

```
{ INITIALIZATION EQUATIONS }
k1 = 55{1/mM*1/min}
INIT Glucose = 0
inflow_of_glucose_ = 50{mM*1/min}
conversion_rate = k1*Glucose
INIT Glucose6p = 0
```

### **GEPASI**



# Online Glycolysis models



http://jjj.biochem.sun.ac.za/database/

### Results



## Conclusions...

- Model based discoveries in glycolysis::
  - Oscillations in concentrations of some but not all metabolites.
  - Control of process distributed throughout pathway
  - Development of theoretical models
- Method integrates knowledge of pathway factors to examine pathway behaviors.

## Examples of other models

Calcium dynamics: Wave patterns in neuronal cells Virtual Cell

Receptor signaling: IgE triggering mast cells Personal computer codes

Cell cycle regulation: length of wee 1 mutant cell divisions Matlab, Mathematica, personal computer codes



# Calcium dynamics in neuroblastoma cells



# Modeling

- Requires formalizing assumptions
  - Rate equations
  - Inclusion or exclusion from model
- Worst case scenario
  - See what you believe
- Best case scenario
  - See something unexplainable
  - Create new laboratory experiments

