Sequence Tagging with Tensorflow

Apr 5, 2017

Code is available on [github](https://github.com).

Demo

Enter sentences like Monica and Chandler met at Central Perk, Obama was president of the United States, John went to New York to interview with Microsoft and then hit the button.

I love Paris

Find Entities

Victoria Stuart was born in 1861 in Halifax Nova Scotia Canada

```text
B-PER I-PER 0 0 0 0 0 B-LOC I-LOC I-LOC I-LOC
```

Disclaimer: as you may notice, the tagger is far from being perfect. Some errors are due to the fact that the demo uses a reduced vocabulary (lighter for the API). But not all. Named Entity Recognition is not a solved problem yet. You may also have to wait for the server to warm-up.

Introduction

I remember the first time I heard about the magic of Deep Learning for Natural Language Processing (NLP). I was just starting a project with a young French startup Riminder and it was the first time I heard about word embeddings. There are moments in life when the confrontation with a new theory seems to make everything else irrelevant. Hearing about word vectors that encode similarity and meaning between words was one of these moments. I was baffled by the simplicity of the model as I started to play with these new concepts, building my first recurrent neural network for sentiment analysis. A few months later, as part of the master thesis of my master in the French university Ecole polytechnique I was working on more advanced models for sequence tagging at Proxem.
Tensorflow vs Theano At that time, Tensorflow had just been open sourced and Theano was the most widely used framework. For those who are not familiar with the two, Theano operates at the matrix level while Tensorflow comes with a lot of pre-coded layers and helpful training mechanisms. Using Theano was sometimes painful but forced me to pay attention to the tiny details hidden in the equations and have a global understanding of how a deep learning library works.

Fastforward a few months: I’m in Stanford and I’m using Tensorflow. One day, here I am, asking myself: “What if you tried to code one of the sequence tagging models in Tensorflow? How long would it take?”. The answer is: no more than a few hours.

This post’s ambition is to provide an example of how to use Tensorflow to build a state-of-the-art model (similar to this paper) for sequence tagging and share some exciting NLP knowledge!

Together with this post, I am releasing the code and hope some will find it useful. You can use it to train your own sequence tagging model. I’ll assume conceptual knowledge about Recurrent Neural Networks. By the way, at this point I have to share my admiration for karpathy’s blog (and this post in particular “The Unreasonable Effectiveness of Recurrent Neural Networks”). For readers new to NLP, have a look at the amazing Stanford NLP class.

Task and Data

First, let’s discuss what Sequence Tagging is. Depending on your background, you may have heard of it under different names: Named Entity Recognition, Part-of-Speech Tagging, etc. We’ll focus on Named Entity Recognition (NER) for the rest of this post. You can check Wikipedia. One example is:

John lives in New York and works for the European Union
B-PER 0 0 B-LOC I-LOC 0 0 0 0 B-ORG I-ORG

In the CoNLL2003 task, the entities are LOC, PER, ORG and MISC for locations, persons, organizations and miscellaneous. The no-entity tag is 0. Because some entities (like New York) have multiple words, we use a tagging scheme to distinguish between the beginning (tag B-)...}, or the
inside of an entity (tag \textit{I-...}). Other tagging schemes exist (IOBES, etc). However, if we just pause for a sec and think about it in an abstract manner, we just need a system that assigns a class (a number corresponding to a tag) to each word in a sentence.

“\textit{But wait, why is it a problem? Just keep a list of locations, common names and organizations!}”

I am glad you asked this question. What makes this problem non-trivial is that a lot of entities, like names or organizations are just made-up names for which we don’t have any prior knowledge. Thus, what we really need is something that will extract contextual information from the sentence, just like humans do!

For our implementation, we are assuming that the data is stored in a .\textit{txt} file with one word and its entity per line, like the following example

\begin{verbatim}
EU B-ORG
rejects O
German B-MISC
call O
to O
boycott O
British B-MISC
lamb O
. O

Peter B-PER
Blackburn I-PER
\end{verbatim}

Model

“\textit{Let me guess… LSTM??}”

You’re right. Like most of the NLP systems, ours is gonna rely on a recurrent neural network at some point. But before delving into the details of our model, let’s break it into 3 pieces:

- **Word Representation**: we need to use a dense representation $w \in \mathbb{R}^n$ for each word. The first thing we can do is load some pre-trained word embeddings $w_{\text{glove}} \in \mathbb{R}^{d_1}$ (GloVe, Word2Vec, Senna, etc.). We’re also going to extract some meaning from the characters. As we said, a lot of entities don’t even have a pretrained word vector, and the fact that the word starts with a capital letter may help for instance.

- **Contextual Word Representation**: for each word in its context, we need to get a meaningful representation $h \in \mathbb{R}^k$. Good guess, we’re gonna use an LSTM here.

- **Decoding**: the ultimate step. Once we have a vector representing each word, we can use it to make a prediction.

Word Representation

For each word, we want to build a vector $w \in \mathbb{R}^n$ that will capture the meaning and relevant features for our task. We’re gonna build this vector as a concatenation of the word embeddings $w_{\text{glove}} \in \mathbb{R}^{d_1}$ from GloVe and a vector containing features extracted from the character level $w_{\text{chars}} \in \mathbb{R}^{d_2}$. One option is to use hand-crafted features, like a component with a 0 or 1 if the word starts with a capital for instance. Another fancier option is to use some kind of neural network to make this extraction...
automatically for us. In this post, we’re gonna use a bi-LSTM at the character level, but we could use any other kind of recurrent neural network or even a convolutional neural network at the character or n-gram level.

Word level representation from characters embeddings

Each character c_i of a word $w = [c_1, \ldots, c_p]$ (we make the distinction between lowercase and uppercase, for instance a and A are considered different) is associated to a vector $c_i \in \mathbb{R}^{d_1}$. We run a bi-LSTM over the sequence of character embeddings and concatenate the final states to obtain a fixed-size vector $w_{\text{chars}} \in \mathbb{R}^{d_2}$. Intuitively, this vector captures the morphology of the word. Then, we concatenate w_{chars} to the word embedding w_{glove} to get a vector representing our word $w = [w_{\text{glove}}, w_{\text{chars}}] \in \mathbb{R}^n$ with $n = d_1 + d_2$.

Let’s have a look at the Tensorflow code. Recall that as Tensorflow receives batches of words and data, we need to pad sentences to make them the same length. As a result, we need to define 2 placeholders (= entries of the computational graph):

```python
# shape = (batch size, max length of sentence in batch)
word_ids = tf.placeholder(tf.int32, shape=[None, None])

# shape = (batch size)
sequence_lengths = tf.placeholder(tf.int32, shape=[None])
```

Now, let’s use tensorflow built-in functions to load the word embeddings. Assume that `embeddings` is a numpy array with our GloVe embeddings, such that `embeddings[i]` gives the vector of the i-th word.
Now, let's build our representation from the characters. As we need to pad words to make them the same length, we also need to define 2 placeholders:

```python
# shape = (batch size, max length of sentence, max length of word)
char_ids = tf.placeholder(tf.int32, shape=[None, None, None])

# shape = (batch size, max length of sentence)
word_lengths = tf.placeholder(tf.int32, shape=[None, None])
```

"Wait, can we use None everywhere like that? Why do we need it?"

Well, that's up to us. It depends on how we perform our padding, but in this post we chose to do it dynamically, i.e. to pad to the maximum length in the batch. Thus, sentence length and word length will depend on the batch. Now, we can build the word embeddings from the characters. Here, we don't have any pretrained character embeddings, so we call `tf.get_variable` that will initialize a matrix for us using the default initializer (`xavier_initializer`). We also need to reshape our 4-dimensional tensor to match the requirement of `bidirectional_dynamic_rnn`. Pay extra attention to the type returned by this function. Also, the state of the lstm is a tuple of memory and hidden state.

```python
# 1. get character embeddings
K = tf.get_variable(name="char_embeddings", dtype=tf.float32,
    shape=[nchars, dim_char])

# shape = (batch, sentence, word, dim of char embeddings)
char_embeddings = tf.nn.embedding_lookup(K, char_ids)

# 2. put the time dimension on axis=1 for dynamic_rnn
s = tf.shape(char_embeddings) # store old shape

# shape = (batch x sentence, word, dim of char embeddings)
char_embeddings = tf.reshape(char_embeddings, shape=[-1, s[-2], s[-1]])
word_lengths = tf.reshape(self.word_lengths, shape=[-1])

# 3. bi lstm on chars

cell_fw = tf.contrib.rnn.LSTMCell(char_hidden_size, state_is_tuple=True)
cell_bw = tf.contrib.rnn.LSTMCell(char_hidden_size, state_is_tuple=True)

_, ((_, output_fw), (_, output_bw)) = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, char_embeddings, sequence_length=word_lengths, dshape=tf.float32)

# shape = (batch x sentence, 2 x char_hidden_size)
output = tf.concat([output_fw, output_bw], axis=-1)

# shape = (batch, sentence, 2 x char_hidden_size)
char_rep = tf.reshape(output, shape=[-1, s[1], 2*char_hidden_size])

# shape = (batch, sentence, 2 x char_hidden_size + word_vector_size)
word_embeddings = tf.concat([pretrained_embeddings, char_rep], axis=-1)
```
Note the use of the special argument `sequence_length` that ensures that the last state that we get is the last valid state. Thanks to this argument, for the unvalid time steps, the `dynamic_rnn` passes the state through and outputs a vector of zeros.

Contextual Word Representation

Once we have our word representation w_t, we simply run a LSTM (or bi-LSTM) over the sequence of word vectors and obtain another sequence of vectors (the hidden states of the LSTM or the concatenation of the two hidden states in the case of a bi-LSTM), $h_t \in \mathbb{R}^k$.

![Diagram of LSTM network]

Bidirectional LSTM on top of word representation to extract contextual representation of each word

The tensorflow code is straightforward. This time we use the hidden states of each time step and not just the final states. Thus, we had as input a sequence of m word vectors $w_1, \ldots, w_m \in \mathbb{R}^n$ and now we have a sequence of vectors $h_1, \ldots, h_m \in \mathbb{R}^k$. Whereas the w_t only captured information at the word level (syntax and semantics), the h_t also take context into account.
Decoding

Computing Tags Scores At this stage, each word w is associated to a vector h that captures information from the meaning of the word, its characters and its context. Let’s use it to make a final prediction. We can use a fully connected neural network to get a vector where each entry corresponds to information from the meaning of the word, its characters and its context. Let’s use it to make a final prediction.

Let’s say we have 9 classes. We take a matrix $W \in \mathbb{R}^{9 \times k}$ and $b \in \mathbb{R}^9$ and compute a vector of scores $s \in \mathbb{R}^9 = W \cdot h + b$. We can interpret the i-th component of s (that we will refer to as $s[i]$) as the score of class i for word w. One way to do this in tensorflow is:

```python
W = tf.get_variable("W", shape=[2*self.config.hidden_size, self.config.ntags],
                      dtype=tf.float32)
b = tf.get_variable("b", shape=[self.config.ntags], dtype=tf.float32,
                      initializer=tf.zeros_initializer())

ntime_steps = tf.shape(context_rep)[1]
context_rep_flat = tf.reshape(context_rep, [-1, 2*hidden_size])
pred = tf.matmul(context_rep_flat, W) + b
scores = tf.reshape(pred, [-1, ntime_steps, ntags])
```

Note that we use a `zero_initializer` for the bias.

Decoding the scores Then, we have two options to make our final prediction.

In both cases, we want to be able to compute the probability $P(y_1, \ldots, y_m)$ of a tagging sequence y_t and find the sequence with the highest probability. Here, y_t is the id of the tag for the t-th word.

Here we have two options:

- **softmax**: normalize the scores into a vector $p \in \mathbb{R}^9$ such that $p[i] = \frac{e^{s[i]}}{\sum_{j=1}^{9} e^{s[j]}}$. Then, p_t can be interpreted as the probability that the word belongs to class i (positive, sum to 1). Eventually, the probability $P(y)$ of a sequence of tag y is the product $\prod_{t=1}^{m} P_t[y_t]$.

- **linear-chain CRF**: the first method makes local choices. In other words, even if we capture some information from the context in our h, thanks to the bi-LSTM, the tagging decision is still local. We don’t make use of the neighbouring tagging decisions. For instance, in “New York”, the fact that we are tagging “York” as a location should help us to decide that “New” corresponds to the beginning of a location. Given a sequence of words w_1, \ldots, w_m, a sequence of score vectors s_1, \ldots, s_m and a sequence of tags y_1, \ldots, y_m, a linear-chain CRF defines a global score $C \in \mathbb{R}$ such that
Sequence Tagging with Tensorflow

\[C(y_1, \ldots, y_m) = b[y_1] + \sum_{t=1}^{m} s_t[y_t] + \sum_{t=1}^{m-1} T[y_t, y_{t+1}] + e[y_m] \]

where \(T \) is a transition matrix in \(\mathbb{R}^{9 \times 9} \) and \(e, b \in \mathbb{R}^9 \) are vectors of scores that capture the cost of beginning or starting with a given tag. The use of the matrix \(T \) captures linear (one step) dependencies between tagging decisions.

Illustration of the scoring of a sentence with a linear-chain CRF. Between these two possible paths, the one with the best score is PER-O-LOC. Notice that if we make our decision locally, based on the score vector of each word, we would have chosen PER-PER-LOC.

Now that we understand the scoring function of the CRF, we need to do 2 things:

1. Find the sequence of tags with the best score.
2. Compute a probability distribution over all the sequence of tags

“This sounds awesome, but don’t we have a computational problem as the number of possible tag choices is exponential?”

Finding the best sequence Well, you’re right. We cannot reasonably imagine to compute the scores of all the \(9^m \) tagging choices to choose the best one or even normalize each sequence score into a probability.

Luckily, the recurrent nature of our formula makes it the perfect candidate to apply dynamic programming. Let’s suppose that we have the solution \(\tilde{s}_{t+1}(y^{t+1}) \) for time steps \(t + 1, \ldots, m \) for sequences that start with \(y^{t+1} \) for each of the 9 possible \(y^{t+1} \). Then, the solution \(\tilde{s}_t(y_t) \) for time steps \(t, \ldots, m \) that starts with \(y_t \) verifies

\[
\tilde{s}_t(y_t) = \operatorname{argmax}_{y_t, \ldots, y_m} C(y_t, \ldots, y_m) = \operatorname{argmax}_{y_{t+1}} s_t[y_t] + T[y_t, y_{t+1}] + \tilde{s}_{t+1}(y^{t+1})
\]

Then, each recurrence step is done in \(O(9 \times 9) \) (taking the argmax for each class). As we perform \(m \) steps, our final cost is \(O(9 \times 9 \times m) \) with is much better. For instance, for a sentence of 10 words we go from more than 3 billions \((9^{10}) \) to just 810 in terms of complexity \((9 \times 9 \times 10) \)!

Probability Distribution over the sequence of tags The final step of a linear chain CRF is to apply a softmax to the scores of all possible sequences to get the probability \(P(y) \) of a given sequence of tags \(y \). To do that, we need to compute the partition factor

\[
Z = \sum_{y_1, \ldots, y_m} e^{C(y_1, \ldots, y_m)}
\]
which is the sum of the scores of all possible sequences. We can apply the same idea as above, but instead of taking the argmax, we sum over all possible paths. Let’s call \(Z_t(y_t) \) the sum of scores for all sequences that start at time step \(t \) with tag \(y_t \). Then, \(Z_t \) verifies

\[
Z_t(y_t) = \sum_{y_{t+1}} e^{s_t(y_t) + T(y_t, y_{t+1})} \sum_{y_{t+2}, \ldots, y_m} e^{C(y_{t+1}, \ldots, y_m)}
\]

\[
= \sum_{y_{t+1}} e^{s_t(y_t) + T(y_t, y_{t+1})} Z_{t+1}(y_{t+1})
\]

\[
\log Z_t(y_t) = \log \sum_{y_{t+1}} e^{s_t(y_t) + T(y_t, y_{t+1}) + \log Z_{t+1}(y_{t+1})}
\]

Then, we can easily define the probability of a given sequence of tags as

\[
P(y_1, \ldots, y_m) = \frac{e^{C(y_1, \ldots, y_m)}}{Z}
\]

Training

Now that we’ve explained the architecture of our model and spent some time on CRFs, a final word on our objective function. We are gonna use cross-entropy loss, in other words our loss is

\[
- \log(P(\tilde{y}))
\]

where \(\tilde{y} \) is the correct sequence of tags and its probability \(P \) is given by

- **CRF:** \(P(\tilde{y}) = \frac{e^{C(\tilde{y})}}{Z} \)
- **local softmax:** \(P(\tilde{y}) = \prod p_t[\tilde{y}_t] \).

“I’m afraid that coding the CRF loss is gonna be painful…”

Here comes the magic of open-source! Implementing a CRF only takes one-line! The following code computes the loss and also returns the matrix \(T \) (transition_params) that will be useful for prediction.

```python
# shape = (batch, sentence) labels = tf.placeholder(tf.int32, shape=[None, None], name="labels")

log_likelihood, transition_params = tf.contrib.crf.crf_log_likelihood(scores, labels, sequence_lengths)

loss = tf.reduce_mean(-log_likelihood)
```

In the case of the local softmax, the computation of the loss is more classic, but we have to pay extra attention to the padding and use \(tf.sequence_mask \) that transforms sequence lengths into boolean vectors (masks).

```python
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=scores, labels=labels)
# shape = (batch, sentence, nclasses) mask = tf.sequence_mask(sequence_lengths)
# apply mask losses = tf.boolean_mask(losses, mask)

loss = tf.reduce_mean(losses)
```
And then, finally, we can define our train operator as

```python
optimizer = tf.train.AdamOptimizer(self.lr)  
train_op = optimizer.minimize(self.loss)
```

Using the trained model

For the local softmax method, performing the final prediction is straightforward, the class is just the class with the highest score for each time step. This is done via tensorflow with:

```python
labels_pred = tf.cast(tf.argmax(self.logits, axis=-1), tf.int32)
```

For the CRF, we have to use dynamic programming, as explained above. Again, this only take one line with tensorflow!

```
This function is pure 'python', as we get as argument the transition_params. The tensorflow Session() evaluates score (= the s_t), that's all. Pay attention that this makes the prediction for only one sample!
```

```
The Viterbi decoding step is done in python for now, but as there seems to be some progress in contrib on similar problems (Beam Search for instance) we can hope for an 'all-tensorflow' CRF implementation anytime soon.
```

```
# shape = (sentence, nclasses)  
score = ...  
viterbi_sequence, viterbi_score = tf.contrib.crf.viterbi_decode(  
    score, transition_params)
```

With the previous code you should get an F1 score close between 90 and 91!

Conclusion

Tensorflow makes it really easy to implement any kind of deep learning system, as long as the layer you're looking for is already implemented. However, you'll still have to go to deeper levels if you're trying something new…

37 Comments

guillaumegenthial.github.io

Recommend 10
Share

Sort by Best

Join the discussion…

LOG IN WITH
OR SIGN UP WITH DISQUS

Name

Aditya Thakker • 2 months ago

Can you suggest how to make this model also consider POS tags along with other inputs?

3
•
Reply • Share

Guillaume Mod • Aditya Thakker • 2 months ago

replaced by Guillaume
I see 2 options:
1. concatenate to the word vector a vector containing extra information. Could be an embedding of POS, or simply one-hot.
2. train your network with more parameters to predict both POS and NER (only change final layers). Thus, your network would “internally” leverage the information.
There surely is some good papers about these techniques that you can find online.
I hope this helps.

Bill Yuchen Lin ➔ Guillaume • 2 months ago
I once tried the first option (with POS embedding) in the theano repo (tagger) on a twitter ner dataset, it has some improvement but very little.

ParvezKhan • 13 days ago
Hi , I am trying to run the source code on github but it showing KeyError: 'UNK'.
Please help

Guillaume Mod ➔ ParvezKhan • 11 days ago
Hi Parvez,
Other users have had the same problem in the past. It usually came from either forgetting to produce the appropriate vocab files or some unknown tag (which is forbidden).
Please let us know if you find the fix!

Hamada Ali • 2 days ago
I'd like to know if the different results for same settings and same datasets coming from the random initialization weights, and how to make results every run with same settings to be identical.

Prashant Gupta • 8 days ago
Excellent post.
In my opinion BILOU scheme for tagging could have given little better F1 score than BIO scheme. I'll try and get back with the results.
What is your opinion though?

Guillaume Mod ➔ Prashant Gupta • 7 days ago
Hi Prashant!
This is a very good question, and if my memory is right I observed better perfs with BILOU indeed. Some papers seem to confirm this, like http://www.aclweb.org/antho.... Share the gap in performance if you observe something significant ;)

Hamada Ali • 14 days ago
I am trying to run the code but the following problem occurs,
Building vocab...
- done. 21 tokens
Building vocab...
Traceback (most recent call last):
 File "build_data.py", line 49, in <module>
build_data(config)
 File "build_data.py", line 26, in build_data
vocabulary = get_glove_vocabulary(config.glove_filename)
 File "C:\Users\hamada\Downloads\sequence_tagging-master\sequence_tagging-master\data_utils.py", line 134, in get_glove_vocabulary
for line in f:

Hi Hamada and Parvez,

The code was designed and tested to run on Unix...

If you have downloaded the glove files, the problem may be coming from some difference in the format of the files... But glove files are supposed to be simple txt files... Anyway, it seems to be just a problem of file reading, which can be caused either by the file or the OS!

If you can post any solution you find here, it will surely help other users!

I hope that helped!

You are right. I run on Linux without any problem. I think better to use Linux OS

I am also facing same issue.

Better to run on Linux

Thanks for the tutorial. I am getting an error "Python int too large to convert to C long" in line optimizer.minimize(self.loss) of model.py. Any suggestion?

Hi Rajeev! This is a weird error. I would suggest to check your Tensorflow install (up-to-date?) and also your dataset!

Yes, its seems my Python-TF were not actually suitable for the platform I was using (although it was working!). I re-installed the 64 bit versions and the error went away.

Thank you! Amazing tutorial

I am building a NER system similar to yours. I have tow questions

1) I want CNN to build a character-level word representation, However, adding the CNN layer causes an error in the LSTM step, what's wrong?

```python
from keras.layers import Conv1D
char_cnn = Conv1D(filters=30, kernel_size=3, padding='same', activation='sigmoid', strides=1/char_embedding_length)
```
Sequence Tagging with Tensorflow

char_max_pooling = MaxPooling1D(pool_size=10)(char_cnn)

[char LSTM step]

2) why char-biLSTM, word-biLSTM and concatenate [char-biLSTM, word-biLSTM] ?
Can not we just like concatenate [char-emb , word-emb] and bi-LSTM ?

Guillaume Mod ➔ Kyeong-Min Nam • 23 days ago
Hi Kyeong,

1. I am not familiar with keras.layers but generally you need to make sure that you get the shape you want. Check the specs, which dimension should the input have, and what you expect in return.

2. As a word can have a lot of characters, if you concatenate all the char embeddings, you can end up with a huge vector (+ you would have to be consistant across words and have the same number of characters for each word). And also the fact that chars are not interesting per se, but rather how they are put together, thus the LSTM that extracts a vector from the sequence of chars embeddings.

I hope it helps!

Sohrab Ark • 2 months ago
Hey, Thank you so much for your great post. it is very useful and clear. I think there is a typo in this line code:

shape = (batch, sentence, 2 x char_hidden_size)
char_rep = tf.reshape(char_rep, shape=[-1, s[1], 2*char_hidden_size])

Inside the reshape it should be "output" variable.

Guillaume Mod ➔ Sohrab Ark • a month ago
Hey Sohrab! Thanks! There was indeed a typo in the blog post version. It is now fixed!

Alex • 2 months ago
Amazing tutorial!
I am building a NER system similar to yours but I am a newbie of TF. I have two questions:
- How is actually performed the training step? I have a set of previously computed word-embeddings which are not related to the dataset of sequences and labels, I have to feed my bi-LSTM with the embeddings and then feeding with the labelled sequence? It is not clear to me how it can learn the different labels and what you are doing when feeding sentences atop of your previous word-embeddings.
- In your code you use tf.nn.dropout to feed the bidirectional rec. neural net, what is it about?

Thank you in advance! :D

Guillaume Mod ➔ Alex • a month ago
Hi Alex,
I am not sure about the depth of the question you’re asking and how far you need to go to understand everything. However, I’ll try.

1. Lots of questions.
 1a. The big picture is the following: you have some dataset (let's say CoNLL), which means sentences along with the true labels. You want to train a system (=learn some matrices that are initialized randomly) using these examples. This system would take as input the sentence and output the labels. To learn the matrices, on each example, you compute a quantity (=a number), called the loss (that captures how far the prediction from our system is from the
ground truth that we actually know), that you want to minimize. The loss is mathematically defined so that the lower, the better your system will be. To minimize the loss, you perform a variant of gradient descent (Batch SGD + Adam).

1b. In the code, when we do

```python
fd, _ = self.get_feed_dict(words, labels, self.config.lr, self.config.dropout)
```

we get a batch of examples (sentences + labels) in a dictionary called `fd`. Then, we give this

Sam Nab • 2 months ago

Thank you for this amazing tutorial.

I have a question: is it possible an add a new class e.g. extracting brands names?

In case yes, what is the recommended method? using transfer learning? if you suggest me another way I would be thankful.

Guillaume • 2 months ago

To add a new class, you would need to produce a new dataset with training examples of this new class. You have multiple options:

1. produce a new dataset, labelling with a rule-based / dictionary + use the known entities from one tagger (brand names are probably labelled as ORG or MISC by a classical tagger).
2. load a pre-trained tagger (just change the last layer), so that you would need less data to learn the new class (through some kind of transfer learning). Then, you can use your resulting tagger to label a new, bigger dataset that you can then correct "by hand", or alternatively, iterate by training an other tagger from scratch...
3. Alternatively, there must be some work on class-incremental learning like https://arxiv.org/pdf/1611.... that could help you, but these are not directly applicable to NER and some work on this topic would surely interest a lot of people!

Han Zhang • 2 months ago

Nice Post. So the transition matrix is learnt through the end to end pipeline? At first just normal distribution? We can add the CRF as last layer in the network and use dynamic programming to compute the output. And then doing BP to get the best parameter for every layer. Is that correct?

Guillaume • 2 months ago

Correct. The transition matrix is randomly initialized and learnt along with the other parameters with BP.

neo • 2 months ago

Nice post.

"_, ((_, output_fw), (_, output_bw)) = tf.nn.bidirectional_dynamic_rnn(lstm_cell, lstm_cell, char_embeddings, sequence_length=word_lengths, dtye=tf.float32)"

we are processing Variable length with dynamic mn function, so the step more than real length will make the hidden states zeros, so the method above will get zero?? I am a little confused.

looking forward to your reply
Citing Tensorflow documentation (https://www.tensorflow.org/...)

"The parameter sequence_length is optional and is used to copy-through state and zero-out outputs when past a batch element's sequence length. So it's more for correctness than performance"

and

*Returns:
A pair (outputs, state) where:

Thus, output_bw is the the last hidden state, i.e., the last valid hidden state which is copied through!

Bill Yuchen Lin • 3 months ago
Hi Guillaume, excellent work! Will u consider using CNN to build a character-level word representation like in Ma and Hovy 2016?

Guillaume Mod ➔ Bill Yuchen Lin • 2 months ago
I'm working on something else right now. You can make a pull request if you implemented this little modification, otherwise I will think about it for the next update! Thanks!

Bill Yuchen Lin ➔ Guillaume • 2 months ago
thanks for the reply! I am not very familiar with tf now, but i will try. thanks again!

Sandeep Pamidiparthi • 3 months ago
outputs are read wrongly as per TF 1.2 (https://www.tensorflow.org/....)

A tuple (outputs, output_states) where:
outputs: A tuple (output_fw, output_bw) containing the forward and the backward rnn output Tensor.
output_states: A tuple (output_state_fw, output_state_bw) containing the forward and the backward final states of bidirectional rnn.

Sandeep Pamidiparthi ➔ Sandeep Pamidiparthi • 3 months ago
In the code section above the outputs come out as a tuple and the states come out as another tuple. May be when you wrote this for older TF version, it might have been like this.

... ((_, output_fw), (_, output_bw)) = tf.nn.bidirectional_dynamic_rnn(lstm_cell, lstm_cell, char_embeddings, sequence_length=word_lengths, dtype=tf.float32)

Guillaume Mod ➔ Sandeep Pamidiparthi • 3 months ago
Hello Sandeep, thanks for your remark! To be sure, you refer to the outputs of the bi-LSTM on top of the characters? In that case, I'm interested in the final states of the bi-LSTM.

Thus, with _ (I read here) I get the final states.
Then as you say, you have a tuple forward backward so _, (fw, bw) gives me what I want.
The final step is to notice that I specify state_is_tuple = True in the cell, so that I can easily extract the state from the LSTMState (which is a combination of the memory + output state). To do that, I decompose fw and bw in an other tuple to extract the output state, and this is why I get , ((_, output_fw), (_, output_bw)).
On the latest TensorFlow (from 1.1 I think), I started to have issues with these lines:

```python
lstm_cell = tf.contrib.rnn.LSTMCell(hidden_size)
(output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn(lstm_cell, lstm_cell, word_embeddings, sequence_length=sequence_lengths, dtype=tf.float32)
```

2017-05-28 12:46:18,086 INFO - ValueError: Attempt to reuse RNNCell

```python
lstm_cell = tf.contrib.rnn.LSTMCell(hidden_size)
(output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn(lstm_cell, lstm_cell, word_embeddings, sequence_length=sequence_lengths, dtype=tf.float32)
```

> Does that make things clearer or did I miss your point?

Guillaume Genthial blog

GUILLAUME GENTHIAL

[16/16]