Local search algorithms

- In many optimization problems, the state space is the space of all possible *complete* solutions.
- We have an **objective function** that tells us how “good” a given state is, and we want to find the solution (goal) by minimizing or maximizing the value of this function.
Example: n-queens problem

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- **State space:** all possible n-queen configurations
- What’s the **objective function**?
 - Number of pairwise conflicts
Example: Traveling salesman problem

- Find the shortest tour connecting a given set of cities
- **State space**: all possible tours
- **Objective function**: length of tour
Local search algorithms

- In many optimization problems, the state space is the space of all possible *complete* solutions.
- We have an **objective function** that tells us how “good” a given state is, and we want to find the solution (goal) by minimizing or maximizing the value of this function.
- The start state may not be specified.
- The path to the goal doesn’t matter.

- In such cases, we can use **local search algorithms** that keep a single “current” state and gradually try to improve it.
Example: \(n \)-queens problem

- Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal
- State space: all possible \(n \)-queen configurations
- Objective function: number of pairwise conflicts
- What’s a possible local improvement strategy?
 - Move one queen within its column to reduce conflicts
Example: n-queens problem

- Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- **State space:** all possible n-queen configurations
- **Objective function:** number of pairwise conflicts
- What’s a possible local improvement strategy?
 - Move one queen within its column to reduce conflicts

$h = 17$
Example: Traveling Salesman Problem

- Find the shortest tour connecting n cities
- **State space**: all possible tours
- **Objective function**: length of tour
- What’s a possible local improvement strategy?
 - Start with any complete tour, perform pairwise exchanges
Hill-climbing search

• Initialize $current$ to starting state
• Loop:
 – Let $next$ = highest-valued successor of $current$
 – If $\text{value}(next) < \text{value}(current)$ return $current$
 – Else let $current = next$

• Variants: choose first better successor, randomly choose among better successors
• “Like climbing mount Everest in thick fog with amnesia”
Hill-climbing search

- **Is it complete/optimal?**
 - No – can get stuck in local optima
 - Example: local optimum for the 8-queens problem

\[h = 1 \]
The state space “landscape”

- How to escape local maxima?
 - Random restart hill-climbing
- What about “shoulders”?
- What about “plateaux”?
Simulated annealing search

• Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency
 – Probability of taking downhill move decreases with number of iterations, steepness of downhill move
 – Controlled by annealing schedule
• Inspired by tempering of glass, metal
Simulated annealing search

• Initialize \textit{current} to starting state
• For $i = 1$ to ∞
 – If $T(i) = 0$ return \textit{current}
 – Let \textit{next} = random successor of \textit{current}
 – Let $\Delta = \text{value(} \textit{next} \text{)} - \text{value(} \textit{current} \text{)}$
 – If $\Delta > 0$ then let \textit{current} = \textit{next}
 – Else let \textit{current} = \textit{next} with probability $\exp(\Delta/T(i))$
Effect of temperature

\[\exp(\Delta/T) \]
Simulated annealing search

• One can prove: If temperature decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching one

• However:
 – This usually takes impractically long
 – The more downhill steps you need to escape a local optimum, the less likely you are to make all of them in a row

• More modern techniques: general family of Markov Chain Monte Carlo (MCMC) algorithms for exploring complicated state spaces
Local beam search

- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the k best successors from the complete list and repeat

- Is this the same as running k greedy searches in parallel?